Data Scientist Salary in India – For Freshers & Experienced

Data Scientist Salary in India

Introduction

Data science is a field that combines domain knowledge, programming abilities, and mathematics and statistics knowledge to extract useful insights from data. Machine learning algorithms are used to number, text, photos, video, audio, and other data to create artificial intelligence (AI) systems that can execute jobs that would normally need human intelligence. As a result, these systems produce insights that analysts and business users may employ to create meaningful commercial value.

Capturing data, occasionally extracting it, and entering it into the system is the first stage of the data science pipeline workflow. Data warehousing, data cleansing, data processing, data staging, and data architecture are all included in the maintenance stage.

Following that, data processing is one of the cornerstones of data science. Data scientists are distinguished from data engineers throughout the investigation and processing of data. The procedures that create useful data include data mining, data categorization and clustering, data modelling, and summarising insights obtained from the data.

The next stage is data analysis, which is equally important. Data scientists work here on exploratory and confirmatory work, regression, predictive analysis, qualitative analysis, and text mining, among other things. When done correctly, there is no such thing as cookie-cutter data science at this stage.

The data scientist shares insights during the last stage. Data visualization, data reporting, the use of various business intelligence tools, and supporting organizations, policymakers, and others in making better decisions are all part of this.

In this article, we will be covering what a data scientist is and their roles and responsibilities. We will furthermore discuss what are the reasons for becoming data scientists, the skills required for becoming a data scientist, their salary in India and abroad, what are the factors that determine their salary, what the top companies hiring data scientists, and the challenges to overcome in a data science career and some of the FAQs asked by the people.

Who is a Data Scientist and What do they do?

Data scientists acquire and analyze enormous sets of organized and unstructured data. A data scientist’s job entails a mix of computer science, statistics, and mathematics. They interpret the outcomes of data analysis, processing, and modelling to generate actionable plans for businesses and other organizations.

Data scientists are analytic professionals who use their knowledge of technology and social science to identify patterns and handle data. They identify solutions to corporate difficulties by combining industry knowledge, contextual insight, and scepticism of established assumptions.

As a result, data scientists are a mix of computer scientists, mathematicians, and trend analysts. Data scientist salaries in India are among the highest due to great demand.

A data scientist’s job entails deciphering complex, unstructured data from sources like smart devices, social media feeds, and emails that don’t fit neatly into a database.

Data Scientist Salary in India

The average salary for a data scientist is Rs.698,412 per year. With less than a year of experience, an entry-level data scientist can make approximately 500,000 per year. Data scientists with 1 to 4 years of experience may expect to earn about 610,811 per year.

Skills Required for a Data Scientist

  • Algorithms, statistics, mathematics, and machine learning knowledge are all important.
  • R, Python, SQL, SAS, and Hive are examples of programming languages that are required to be known by a Data Scientist.
  • Communication skills are required in order to properly communicate the results to the rest of the team.

Data Scientist Job Roles and Responsibilities

Data Scientist Job Roles

Data scientists work closely with business stakeholders to learn about their objectives and how data may help them achieve goals. They create algorithms and predictive models to extract the data that the business needs, as well as help, evaluate the data and share findings with peers. Along with R, Python has demonstrated its ability to sort data according to both generic and specialized needs. Python data science programmers in India make higher than both software developers and DevOps programmers. The reason for this is that data gathering, data cleansing, and data processing are becoming increasingly popular in today’s world, as businesses require data to obtain market and customer data.

Data Scientists Responsibilities

  • Taking massive amounts of structured and unstructured data and turning it into useful information.
  • Identifying the data analytics solutions that have the most potential to propel businesses forward.
  • Using data analysis tools such as text analytics, machine learning, and deep learning to uncover hidden patterns and trends.
  • Data cleansing and validation to improve data accuracy and efficacy.
  • Data visualization is used to communicate all of the positive observations and discoveries to the company’s stakeholders.

Key Reasons to Become a Data Scientist

1. Growing Demand

One of the most in-demand jobs for 2021 is data science. Data science and analytics are expected to employ more than 11 million people by 2026. India is the second-largest source of data scientist jobs after the United States. One of the main reasons for the high salaries of data scientists in India is the high demand.

2. High-paying jobs with a wide range of responsibilities

Not only is there a high demand for data scientists, but the types of jobs available are also plentiful. The demand for data scientists is rapidly increasing, and there is a substantial supply shortage. Due to a shortage of essential skill sets, there are a large number of vacant job openings all around the world. Because of the severe scarcity of talent, this is an excellent time to enter this sector.

3. Changing working environments

The future workplace is being shaped by data science. More and more routine and manual chores are being mechanized thanks to artificial intelligence and robotics. As people take on more critical thinking and problem-solving roles, data science technologies have made it easier to educate robots to perform repetitive jobs.

4. Increasing product quality

Machine learning  and Artificial Intelligence has allowed businesses to personalize their offers and improve client experiences. They are thriving in every industry, from information technology to health care, and from e-commerce to marketing and retail. Because data is a company’s most valuable asset, Data Scientists play a critical role as trusted advisers and strategic partners to management. They look for relevant information in the data that might help them improve their specialty, determine their desired target audience, and plan future marketing and growth initiatives.

5. Contributing to the greater good

The healthcare industry has been transformed by predictive analytics and machine learning. Early diagnosis of cancers, organ defects, and other diseases is possible because of data science.

6. Evolving Field

Because of the growing demand for data all around the world, data science is rapidly evolving. Data scientists have a wide range of skills that may help firms make better strategic decisions by leveraging data and information. They have great possibilities to engage with data and experiment to find the best solutions for organizations. Big Data, Artificial Intelligence (AI), Machine Learning (ML), as well as some newer technologies like Blockchain, Edge Computing, Serverless Computing, Digital Twins, and others that employ various practices and techniques within the Data Science industry, are just a few of the new exciting fields that are emerging within this field.

 7. Interesting Job role

Human behavior is the primary focus of data scientists. As a data scientist, you’ll largely be working on how humans operate, from designing a chatbot to evaluating user experience online. As a result, you’ll be directly participating in one of the century’s most important endeavours.

8. Extensive job experience

You can experiment with a wide range of fields as a data scientist. You’ll be able to work on a variety of geeky projects, ranging from eCommerce enterprises to startups to production companies to renewable energies to traffic optimization. As a result, you’ll have a lot of “horizontal mobility” in the field.

Data Scientist Salary Deciding Factors

Based on Experience

Let’s look at how the salary of a Data Scientist in India differs based on experience.

Because of the strong association between years of work experience and higher-paying salaries, a career in data is particularly appealing to young IT workers. We’ll look at how data scientist salaries rise with experience in this section. In the future, salaries in the field of data may look something like this:

In India, the average entry-level data scientist income is 511,468 rupees per annum for a recent graduate.

A data scientist in their early career with 1-4 years of experience earns an average of Rs.773,442 per year.

Employees with 5 to 9 years of experience can expect to earn between INR 12 and 14 lakhs per annum. The average mid-level data scientist income, according to payscale, is Rs1,367,306 per annum

Source

A highly experienced employee with decades of expertise or who has held management positions might expect to earn anywhere from INR 24 lakhs per annum to a healthy crore!

With a transition/promotion from the role assigned to them to a higher one, a data analyst’s income improves by 50%.

Based on Location

Mumbai has the most job prospects and the highest yearly data scientist salaries in India for data innovators, followed by Bangalore and New Delhi. However, because Bangalore is India’s startup capital, it boasts the most startup job opportunities. Because Bangalore is considered the centre of India’s tech industry, a data scientist’s compensation is likely to be higher than in other locations.

According to Payscale, a data scientist’s income in India varies depending on where they work:

Mumbai Rs.788,789 per annum
Chennai Rs.794,403 per annum
Bangalore Rs.984,488 per annum
Hyderabad Rs.795,023 per annum
Pune Rs.725,146 per annum
Kolkata Rs. 402,978 per annum

Source: Payscale

Bangalore, Chennai, and Hyderabad are three of the highest paying cities for data scientists in India.

Based on Employer

Without a doubt, prominent organisations are at the top of the list of the highest-paying data positions. They also have a reputation for raising salaries by 15% per year. Top firms pay data scientists in the following ways:

IBM Corp INR 1,468,040 per annum
Accenture INR 1,986,586 per annum
JP Morgan Chase and Co INR 997,500 per annum
American Express INR 1,350,000 per annum
McKinsey and Company INR 1,080,000 per annum
Wipro Technology INR 1,750,000 per annum

Based On Skills

To get a job paying this well, you’ll need to have more than a Master’s degree and be conversant with the languages and tools used to manage data. Here are some additional AIM tidbits:

  • Knowing R is the most crucial and sought-after expertise, followed by Python. Python salary in India is expected to be around 10.2 lakhs INR per annum
  • When a Data Analyst has knowledge of both Big Data and Data Science, their income rises by 26%, compared to when they only have knowledge of one.
  • SAS users are paid in the range of INR 9.1-10.8 lakhs per annum, whereas SPSS professionals are compensated in the range of INR 7.3 lakhs per annum.
  • Machine Learning salaries in India start at roughly 3.5 lakhs INR and can rise to 16 lakhs INR as you advance in the industry. Python is one of the most popular languages for machine learning, and Python developers in India earn some of the best salaries in the world.
  • Artificial Intelligence knowledge can assist to advance your career in general. If you are a beginner in this field, the Artificial Intelligence pay in India is not less than 5-6 lakhs INR.

So now is the time to improve data abilities in order to maximize your earnings!

Top Companies Who Hire Data Scientists

Mu Sigma, Accenture, and Tata Consultancy Services Limited are the top respondents for the job title Data Scientist in India. Amazon.com Inc has the highest reported salaries. Accenture and HCL Technologies Ltd. are two more firms that pay well for this position. Mu Sigma pays the least. Tata Consultancy Services Limited and IBM India Private Limited are likewise on the low end of the range.

Data Scientist Salary in Other Countries

Salaries offered by the top 5 countries are as follows-

United States

The United States of America is at the top of the list of countries that give high salaries to data scientists who are willing to work for them. The average yearly salary for data scientists in the United States is $120,000 per year. The pay is higher than in any other country for data scientists.

Australia

Australia is ranked second in the list of countries that pay data scientists well. This is evidenced by the influx of data scientists from Australia and other countries to the United States. The average salary for a Data Scientist is between AU$75,233 per year- AU$121,578 per year based on one’s experience.

Israel

Nobody could have predicted that Israel would become a major IT centre, with a plethora of career opportunities for both novice and seasoned data scientists. In Tel Aviv, Israel, working data professionals earn roughly $88,000 per year

Canada

You’re in for a treat if you’re seeking data science employment in Canada. Data scientists in Canada make roughly $81,000 per year. The starting wage for a data scientist is $77,870 per year and can rise to $117,750 per year.

Germany

In Germany, people looking for data science employment might earn up to 5,960 euros per month. Working data scientists in Germany earn between 2,740 and 9,470 euros per month.

Challenges to Overcome in Data Science Career

1). Preparation of Data

Before using data for analysis, data scientists spend roughly 80% of their time cleaning and preparing information to improve its quality – that is, to make it accurate and consistent. However, 57 percent of them regard it to be the most difficult aspect of their professions, describing it as time-consuming and monotonous. On a daily basis, they must process terabytes of data across numerous formats, sources, functions, and platforms while keeping a track of their activities to avoid repetition.

Adopting developing AI-enabled data science solutions like Augmented Analytics and Auto feature engineering is one way to address this problem. Data scientists can be more productive by using Augmented Analytics to automate tedious data cleansing and preparation chores.

2) A variety of data sources

More data sources will be needed by data scientists to make meaningful judgments as firms continue to use various sorts of apps and technologies and generate various formats of data. This approach necessitates manual data entry and time-consuming data searching, which results in errors, repetitions, and, ultimately, incorrect conclusions.

To rapidly access information from many sources, organizations require a single platform that is integrated with different data sources. Data in this unified platform can be pooled and regulated effectively and in real-time, allowing data scientists to save a significant amount of time and effort.

3) Data Protection

Cyberattacks are becoming more widespread as firms migrate to cloud data management. This has resulted in two key issues:

  • Confidential information is at risk.
  • As a result of recurrent cyberattacks, regulatory norms have grown, lengthening the data consent and utilization processes, further aggravating the data scientists’ displeasure.

To protect their data, businesses should use powerful machine learning-enabled security platforms and implement additional security measures. Simultaneously, they must maintain rigorous adherence to data protection regulations in order to prevent time-consuming audits and costly fines.

4) Recognizing the Business Issue

Data scientists must first completely understand the business challenge before undertaking data analysis and developing solutions. Most data scientists take a mechanical approach to this, jumping right into examining data sets without first identifying the business problem and goal.

As a result, before beginning any analysis, data scientists must follow a specific methodology. The workflow should be created after consulting with business stakeholders and include well-defined checklists to aid in problem identification and understanding.

5) Effective Non-Technical Stakeholder Communication

Data scientists must be able to communicate successfully with corporate leaders who may not be aware of the complexity and technical language involved in their work. If the CEO, stakeholder, or client is unable to comprehend their models, their solutions are unlikely to be implemented.

This is a skill that data scientists can develop. They can use concepts like “data storytelling” to provide their communication with a more systematic approach and a compelling narrative to their analyses and visuals.

6) Metrics and KPIs That Aren’t Defined

Management teams’ lack of awareness of data science leads to unrealistic expectations of data scientists, which has an impact on their performance. Data scientists are supposed to come up with a magic bullet that will solve all of the company’s problems. This is quite ineffective.

As a result, every company should have:

Data scientists must use well-defined metrics to assess the accuracy of their analyses.

Appropriate business KPIs to assess the impact of the analysis on the business.

Summary

Despite the difficulties, data scientists are the most sought-after experts in the industry. With the data world developing at such a rapid rate, being a successful data scientist requires not only technical capabilities but also a thorough understanding of business requirements, collaboration with various stakeholders, and persuasion of business executives to act on the information offered.

FAQs

Q.1: Do I need a degree to become a Data Scientist?

Ans: There are no degrees that will qualify you as a trustworthy data scientist.

There are no prerequisites for becoming a credible data scientist, but neither are there any prerequisites for becoming a credible data scientist.

Unlike several other occupational titles, “data scientist” is not a protected title. Medical doctors, nurses, and lawyers, for example, have stringent requirements. Data science, however, does not.

Data science has a wide range of applications and is fundamentally interdisciplinary. As a result, education is still relevant. Data scientists come from a variety of educational backgrounds.

Computer-related fields and Statistics are the two most generally advised degrees if you wish to pursue data science as a career. However, all STEM degrees are useful. Obtain a bachelor’s degree in information technology, computer science, mathematics, physics, or a related discipline; Obtain a master’s degree in data science or a closely related discipline; Obtain experience in the field in which you wish to work (e.g.: healthcare, physics, business).

Q.2: How much money can you make in data science?

Ans: The average data scientist’s salary in India is Rs. 698,412. With less than a year of experience, an entry-level data scientist can make approximately Rs. 500,000 per year. Data scientists with 1 to 4 years of experience may expect to earn about Rs. 610,811 per year. In India, a mid-level data scientist with 5 to 9 years of experience earns Rs.1,004,082. Senior-level data scientists in India earn roughly 1,700,000 per year as their expertise and talents increase.

 Q.3: Are Data Scientists the Highest Paying Jobs?

Ans: One of the highest-paying careers in data science. Data Scientists earn an average of Rs.116,100 a year, according to Glassdoor. As a result, Data Science is a very lucrative career choice.

In 2020, there are expected to be 2.7 million open positions in data analysis, data science, and related fields (source: IBM). Employer demand for both data scientists and data engineers is expected to climb by 39% by 2020.

Q.4: Is Data Scientist a good career?

Ans: Data Science is A “Lucrative Career”.

In recent years, the input of data has increased at an exponential rate. As massive amounts of data began to flow into data centres, numerous new opportunities arose, particularly in data science. Digital transformation was the only option due to technological advancements in the data landscape. As more businesses embrace digitization, they are looking for employees to fill the data science and related positions. Data science professionals are in high demand all across the world. These job prospects are likely to increase significantly beyond 2021, with more than 1.5 lakh additional jobs being created. Glassdoor has ranked data science as the number one job in the United States for the past four years, hence it is a good career option.

Q.5: Can I become a Data Scientist with no experience?

Ans: Data science is a booming area, and many people may be considering a career change due to lucrative work opportunities. You must, however, be able to explain your professional change. You may become a data scientist without any prior experience if you keep these things in mind.

To become a data scientist, follow these three steps: Obtain a bachelor’s degree in information technology, computer science, mathematics, physics, or a related discipline; Obtain a master’s degree in data science or a closely related discipline; Obtain experience in the field in which you wish to work (ex: healthcare, physics, business).

Q.6: Can I become a data scientist without a master’s?

Ans: While some schools are offering or developing Master’s Programs with this title, the majority of Data Scientists today do not hold such a degree. There are numerous options for doing so, both with and without an advanced degree program. Many people are performing excellent “Data Science” work under different names.

Q.7: Can I learn data science without Programming?

One of the most difficult and popular disciplines of computer science is data science. Before learning Python, you’ll need to understand some basic data science ideas, after which you’ll be able to solve a variety of real-world problems without writing a single line of code!

While programming is undoubtedly a necessary ability for a data scientist profession, this does not imply that you must be an avid programmer to pursue a career in data science. Being a good coder is a highly desirable but not required talent for a data scientist. Here is a free course to get started in Data science.

Q.8: Data Scientist Salary in the US?

The United States of America is at the top of the list of countries that give high salaries to data scientists who are willing to work for them. The average yearly salary for data scientists in the United States is $120,000 per year. The pay is higher than in any other country for data scientists.

Additional Resources

Previous Post

Highest Paying Jobs In India (2024)

Next Post

Flask vs. Django: Which Python Framework to Choose?

Exit mobile version