Finding The Number of Islands

Number of Islands

Problem Statement

Given a matrix of size M x N, where ‘1’ represents land, while ‘0’ represents water. The task is to return the number of islands present in the matrix. An island is a group of 1’s surrounded either vertically or horizontally.

Examples:

Input:

Confused about your next job?

In 4 simple steps you can find your personalised career roadmap in Software development for FREE



Expand in New Tab 

Output: 3
Explanation: Shown in the image

Approach 1: DFS

The idea is to consider the given matrix as a graph, where each cell is a node of the given graph. Two nodes contain an edge if and only if there is a ‘1’ either horizontally or vertically.

Algorithm

  • Scan the matrix from (0,0) to (N, M).
  • If the current element is ‘1’, start a DFS.
  • In the DFS traversal, mark every visited node.
  • Count the number of islands as the number of nodes that trigger the DFS.
  • Return count.

C++ Code Implementation

void dfs(vector < vector < char >> & grid, int r, int c) {
  int nr = grid.size();
  int nc = grid[0].size();
 
  grid[r][c] = '0';
  if (r - 1 >= 0 && grid[r - 1][c] == '1') dfs(grid, r - 1, c);
  if (r + 1 < nr && grid[r + 1][c] == '1') dfs(grid, r + 1, c);
  if (c - 1 >= 0 && grid[r][c - 1] == '1') dfs(grid, r, c - 1);
  if (c + 1 < nc && grid[r][c + 1] == '1') dfs(grid, r, c + 1);
}
 
int numIslands(vector < vector < char >> & grid) {
  int nr = grid.size();
  if (!nr) return 0;
  int nc = grid[0].size();
 
  int num_islands = 0;
  for (int r = 0; r < nr; ++r) {
    for (int c = 0; c < nc; ++c) {
      if (grid[r][c] == '1') {
        ++num_islands;
        dfs(grid, r, c);
      }
    }
  }
 
  return num_islands;
}

Java Code Implementation

 void dfs(char[][] grid, int r, int c) {
  int nr = grid.length;
  int nc = grid[0].length;
 
  if (r < 0 || c < 0 || r >= nr || c >= nc || grid[r][c] == '0') {
    return;
  }
 
  grid[r][c] = '0';
  dfs(grid, r - 1, c);
  dfs(grid, r + 1, c);
  dfs(grid, r, c - 1);
  dfs(grid, r, c + 1);
}
 
public int numIslands(char[][] grid) {
  if (grid == null || grid.length == 0) {
    return 0;
  }
 
  int nr = grid.length;
  int nc = grid[0].length;
  int num_islands = 0;
  for (int r = 0; r < nr; ++r) {
    for (int c = 0; c < nc; ++c) {
      if (grid[r][c] == '1') {
        ++num_islands;
        dfs(grid, r, c);
      }
    }
  }
 
  return num_islands;
}

Python Code Implementation

def numIslands(self, grid):
    if not grid:
        return 0
 
    count = 0
    for i in range(len(grid)):
        for j in range(len(grid[0])):
            if grid[i][j] == "1":
                self.dfs(grid, i, j)
                count += 1
    return count
 
 
def dfs(self, grid, i, j):
    if i < 0 or j < 0 or i >= len(grid) or j >= len(grid[0]) or grid[i][j] != "1":
        return
    grid[i][j] = "#"
    self.dfs(grid, i + 1, j)
    self.dfs(grid, i - 1, j)
    self.dfs(grid, i, j + 1)
    self.dfs(grid, i, j - 1)
  • Time Complexity: O(M * N), where M and N are the size of the matrix
  • Space Complexity: O(M * N).

Approach 2: BFS

The problem can also be solved using the BFS approach. The logic remains the same as the previous approach.

Algorithm

  • Scan the matrix from (0,0) till (N, M).
  • If the current element is ‘1’, start a BFS.
  • Consider a queue and put the current node into the queue.
  • Iteratively visit its neighbours vertically and horizontally and mark them as visited.
  • The count is the total number of times the BFS has been invoked.
  • Return count.

C++ Code Implementation

int numIslands(vector < vector < char >> & grid) {
    int nr = grid.size();
    if (!nr) return 0;
    int nc = grid[0].size();
 
    int num_islands = 0;
    for (int r = 0; r < nr; ++r) {
      for (int c = 0; c < nc; ++c) {
        if (grid[r][c] == '1') {
          ++num_islands;
          grid[r][c] = '0'; // mark as visited
          queue < pair < int, int >> neighbors;
          neighbors.push({
            r,
            c
          });
          while (!neighbors.empty()) {
            auto rc = neighbors.front();
            neighbors.pop();
            int row = rc.first, col = rc.second;
            if (row - 1 >= 0 && grid			
== '1') { neighbors.push({ row - 1, col }); grid
= '0'; } if (row + 1 < nr && grid
== '1') { neighbors.push({ row + 1, col }); grid
= '0'; } if (col - 1 >= 0 && grid
== '1') { neighbors.push({ row, col - 1 }); grid
= '0'; } if (col + 1 < nc && grid
== '1') { neighbors.push({ row, col + 1 }); grid
= '0'; } } } } } return num_islands;

Java Code Implementation

public int numIslands(char[][] grid) {
  if (grid == null || grid.length == 0) {
    return 0;
  }
 
  int nr = grid.length;
  int nc = grid[0].length;
  int num_islands = 0;
 
  for (int r = 0; r < nr; ++r) {
    for (int c = 0; c < nc; ++c) {
      if (grid[r][c] == '1') {
        ++num_islands;
        grid[r][c] = '0'; // mark as visited
        Queue < Integer > neighbors = new LinkedList < > ();
        neighbors.add(r * nc + c);
        while (!neighbors.isEmpty()) {
          int id = neighbors.remove();
          int row = id / nc;
          int col = id % nc;
          if (row - 1 >= 0 && grid			
== '1') { neighbors.add((row - 1) * nc + col); grid
= '0'; } if (row + 1 < nr && grid
== '1') { neighbors.add((row + 1) * nc + col); grid
= '0'; } if (col - 1 >= 0 && grid
== '1') { neighbors.add(row * nc + col - 1); grid
= '0'; } if (col + 1 < nc && grid
== '1') { neighbors.add(row * nc + col + 1); grid
= '0'; } } } } } return num_islands; }

Python Code Implementation

from collections import deque
 
 
def numIslands(grid):
    if not grid:
        return 0
    lands = set(
        [
            (i, j)
            for j in xrange(len(grid[0]))
            for i in xrange(len(grid))
            if grid[i][j] == "1"
        ]
    )
    count = 0
    while lands:
        count += 1
        i, j = lands.pop()
        connected = deque()
        connected.append((i, j))
        while connected:
            i, j = connected.popleft()
            if (i + 1, j) in lands:
                connected.append((i + 1, j))
                lands.remove((i + 1, j))
            if (i - 1, j) in lands:
                connected.append((i - 1, j))
                lands.remove((i - 1, j))
            if (i, j + 1) in lands:
                connected.append((i, j + 1))
                lands.remove((i, j + 1))
            if (i, j - 1) in lands:
                connected.append((i, j - 1))
                lands.remove((i, j - 1))
    return count

Time Complexity:O(M * N), where M and N is the size of the matrix
Space Complexity:O(min(M,N)).

Practice Question

FAQs

Q.1: What is the time and space complexity of the DFS approach?

Ans: The time and space complexity of the DFS  approach is O(M * N) and O(M * N).

Q.2: In terms of space complexity, is the BFS approach efficient over DFS?

Ans: Yes, the space complexity for the BFS approach is O(min(N,M)), in the worst case when the grid is filled completely with 1’s, whereas for DFS it is O(N*M).

Previous Post
Characteristics of Cloud Computing

Top Major Characteristics of Cloud Computing (2023)

Next Post
Node.js vs React.js

Node.js Vs React.js: What’s The Difference?

Total
0
Share