Problem Statement
Given a matrix of size M x N, where ‘1’ represents land, while ‘0’ represents water. The task is to return the number of islands present in the matrix. An island is a group of 1’s surrounded either vertically or horizontally.
Examples:
Input:
Confused about your next job?
Output: 3
Explanation: Shown in the image
Approach 1: DFS
The idea is to consider the given matrix as a graph, where each cell is a node of the given graph. Two nodes contain an edge if and only if there is a ‘1’ either horizontally or vertically.
Algorithm
- Scan the matrix from (0,0) to (N, M).
- If the current element is ‘1’, start a DFS.
- In the DFS traversal, mark every visited node.
- Count the number of islands as the number of nodes that trigger the DFS.
- Return count.
C++ Code Implementation
void dfs(vector < vector < char >> & grid, int r, int c) { int nr = grid.size(); int nc = grid[0].size(); grid[r][c] = '0'; if (r - 1 >= 0 && grid[r - 1][c] == '1') dfs(grid, r - 1, c); if (r + 1 < nr && grid[r + 1][c] == '1') dfs(grid, r + 1, c); if (c - 1 >= 0 && grid[r][c - 1] == '1') dfs(grid, r, c - 1); if (c + 1 < nc && grid[r][c + 1] == '1') dfs(grid, r, c + 1); } int numIslands(vector < vector < char >> & grid) { int nr = grid.size(); if (!nr) return 0; int nc = grid[0].size(); int num_islands = 0; for (int r = 0; r < nr; ++r) { for (int c = 0; c < nc; ++c) { if (grid[r][c] == '1') { ++num_islands; dfs(grid, r, c); } } } return num_islands; }
Java Code Implementation
void dfs(char[][] grid, int r, int c) { int nr = grid.length; int nc = grid[0].length; if (r < 0 || c < 0 || r >= nr || c >= nc || grid[r][c] == '0') { return; } grid[r][c] = '0'; dfs(grid, r - 1, c); dfs(grid, r + 1, c); dfs(grid, r, c - 1); dfs(grid, r, c + 1); } public int numIslands(char[][] grid) { if (grid == null || grid.length == 0) { return 0; } int nr = grid.length; int nc = grid[0].length; int num_islands = 0; for (int r = 0; r < nr; ++r) { for (int c = 0; c < nc; ++c) { if (grid[r][c] == '1') { ++num_islands; dfs(grid, r, c); } } } return num_islands; }
Python Code Implementation
def numIslands(self, grid): if not grid: return 0 count = 0 for i in range(len(grid)): for j in range(len(grid[0])): if grid[i][j] == "1": self.dfs(grid, i, j) count += 1 return count def dfs(self, grid, i, j): if i < 0 or j < 0 or i >= len(grid) or j >= len(grid[0]) or grid[i][j] != "1": return grid[i][j] = "#" self.dfs(grid, i + 1, j) self.dfs(grid, i - 1, j) self.dfs(grid, i, j + 1) self.dfs(grid, i, j - 1)
- Time Complexity: O(M * N), where M and N are the size of the matrix
- Space Complexity: O(M * N).
Approach 2: BFS
The problem can also be solved using the BFS approach. The logic remains the same as the previous approach.
Algorithm
- Scan the matrix from (0,0) till (N, M).
- If the current element is ‘1’, start a BFS.
- Consider a queue and put the current node into the queue.
- Iteratively visit its neighbours vertically and horizontally and mark them as visited.
- The count is the total number of times the BFS has been invoked.
- Return count.
C++ Code Implementation
int numIslands(vector < vector < char >> & grid) { int nr = grid.size(); if (!nr) return 0; int nc = grid[0].size(); int num_islands = 0; for (int r = 0; r < nr; ++r) { for (int c = 0; c < nc; ++c) { if (grid[r][c] == '1') { ++num_islands; grid[r][c] = '0'; // mark as visited queue < pair < int, int >> neighbors; neighbors.push({ r, c }); while (!neighbors.empty()) { auto rc = neighbors.front(); neighbors.pop(); int row = rc.first, col = rc.second; if (row - 1 >= 0 && grid== '1') { neighbors.push({ row - 1, col }); grid= '0'; } if (row + 1 < nr && grid== '1') { neighbors.push({ row + 1, col }); grid= '0'; } if (col - 1 >= 0 && grid== '1') { neighbors.push({ row, col - 1 }); grid= '0'; } if (col + 1 < nc && grid== '1') { neighbors.push({ row, col + 1 }); grid= '0'; } } } } } return num_islands;
Java Code Implementation
public int numIslands(char[][] grid) { if (grid == null || grid.length == 0) { return 0; } int nr = grid.length; int nc = grid[0].length; int num_islands = 0; for (int r = 0; r < nr; ++r) { for (int c = 0; c < nc; ++c) { if (grid[r][c] == '1') { ++num_islands; grid[r][c] = '0'; // mark as visited Queue < Integer > neighbors = new LinkedList < > (); neighbors.add(r * nc + c); while (!neighbors.isEmpty()) { int id = neighbors.remove(); int row = id / nc; int col = id % nc; if (row - 1 >= 0 && grid== '1') { neighbors.add((row - 1) * nc + col); grid= '0'; } if (row + 1 < nr && grid== '1') { neighbors.add((row + 1) * nc + col); grid= '0'; } if (col - 1 >= 0 && grid== '1') { neighbors.add(row * nc + col - 1); grid= '0'; } if (col + 1 < nc && grid== '1') { neighbors.add(row * nc + col + 1); grid= '0'; } } } } } return num_islands; }
Python Code Implementation
from collections import deque def numIslands(grid): if not grid: return 0 lands = set( [ (i, j) for j in xrange(len(grid[0])) for i in xrange(len(grid)) if grid[i][j] == "1" ] ) count = 0 while lands: count += 1 i, j = lands.pop() connected = deque() connected.append((i, j)) while connected: i, j = connected.popleft() if (i + 1, j) in lands: connected.append((i + 1, j)) lands.remove((i + 1, j)) if (i - 1, j) in lands: connected.append((i - 1, j)) lands.remove((i - 1, j)) if (i, j + 1) in lands: connected.append((i, j + 1)) lands.remove((i, j + 1)) if (i, j - 1) in lands: connected.append((i, j - 1)) lands.remove((i, j - 1)) return count
Time Complexity:O(M * N), where M and N is the size of the matrix
Space Complexity:O(min(M,N)).
Practice Question
FAQs
Q.1: What is the time and space complexity of the DFS approach?
Ans: The time and space complexity of the DFS approach is O(M * N) and O(M * N).
Q.2: In terms of space complexity, is the BFS approach efficient over DFS?
Ans: Yes, the space complexity for the BFS approach is O(min(N,M)), in the worst case when the grid is filled completely with 1’s, whereas for DFS it is O(N*M).