Selection sort is a simple comparison-based sorting algorithm. It is in-place and needs no extra memory.
The idea behind this algorithm is pretty simple. We divide the array into two parts: sorted and unsorted. The left part is sorted subarray and the right part is unsorted subarray. Initially, sorted subarray is empty and unsorted array is the complete given array.
We perform the steps given below until the unsorted subarray becomes empty:
Part of unsorted array
Part of sorted array
Leftmost element in unsorted array
Minimum element in unsorted array
This is our initial array A = [5, 2, 6, 7, 2, 1, 0, 3]
Leftmost element of unsorted part = A[0]
Minimum element of unsorted part = A[6]
We will swap A[0] and A[6] then, make A[0] part of sorted subarray.
Leftmost element of unsorted part = A[1]
Minimum element of unsorted part = A[5]
We will swap A[1] and A[5] then, make A[1] part of sorted subarray.
Leftmost element of unsorted part = A[2]
Minimum element of unsorted part = A[4]
We will swap A[2] and A[4] then, make A[2] part of sorted subarray.
Leftmost element of unsorted part = A[3]
Minimum element of unsorted part = A[5]
We will swap A[3] and A[5] then, make A[3] part of sorted subarray.
Leftmost element of unsorted part = A[4]
Minimum element of unsorted part = A[7]
We will swap A[4] and A[7] then, make A[4] part of sorted subarray.
Leftmost element of unsorted part = A[5]
Minimum element of unsorted part = A[6]
We will swap A[5] and A[6] then, make A[5] part of sorted subarray.
Leftmost element of unsorted part = A[6]
Minimum element of unsorted part = A[7]
We will swap A[6] and A[7] then, make A[6] part of sorted subarray.
This is the final sorted array.
FindMinIndex:
FindMinIndex(Arr[], start, end)
min_index = start
FOR i from (start + 1) to end:
IF Arr[i] < Arr[min_index]:
min_index = i
END of IF
END of FOR
Return min_index
Suppose, there are ‘n’ elements in the array. Therefore, at worst case, there can be n iterations in FindMinIndex() for start = 1 and end = n. We did not take any auxiliary space.
Therefore,
Time complexity: O(n)
Space complexity: O(1)
Selection Sort:
SelectionSort(Arr[], arr_size):
FOR i from 1 to arr_size:
min_index = FindMinIndex(Arr, i, arr_size)
IF i != min_index:
swap(Arr[i], Arr[min_index])
END of IF
END of FOR
Suppose, there are ‘n’ elements in the array. Therefore, at worst case, there can be n iterations in FindMinIndex() for start = 1 and end = n. No auxiliary space used.
Total iterations = (n – 1) + (n – 2) + . . . + 1 = (n * (n – 1)) / 2 = (n2 – n) / 2
Therefore,
Time complexity: O(n2)
Space complexity: O(1)
Following are C, C++, Java and Python implementations of Selection Sort.
Selection sort program in C:
#include <stdio.h>
void swap(int *A, int i, int j) {
int temp = A[i];
A[i] = A[j];
A[j] = temp;
}
int findMinIndex(int *A, int start, int end) {
int min_index = start;
++start;
while(start < end) {
if(A[start] < A[min_index])
min_index = start;
++start;
}
return min_index;
}
void selectionSort(int *A, int n) {
for(int i = 0; i < n - 1; ++i) {
int min_index = findMinIndex(A, i, n);
if(i != min_index)
swap(A, i, min_index);
}
}
int main() {
int A[] = {5, 2, 6, 7, 2, 1, 0, 3}, n = 8;
selectionSort(A, n);
for(int i = 0; i < n; ++i)
printf("%d ", A[i]);
return 0;
}
Selection sort program in C++:
#include <iostream>
#include <vector>
using namespace std;
int findMinIndex(vector<int> &A, int start) {
int min_index = start;
++start;
while(start < (int)A.size()) {
if(A[start] < A[min_index])
min_index = start;
++start;
}
return min_index;
}
void selectionSort(vector<int> &A) {
for(int i = 0; i < (int)A.size(); ++i) {
int min_index = findMinIndex(A, i);
if(i != min_index)
swap(A[i], A[min_index]);
}
}
int main() {
vector<int> A = {5, 2, 6, 7, 2, 1, 0, 3};
selectionSort(A);
for(int num : A)
cout << num << ' ';
return 0;
}
Selection Sort Program in Java
class SelectionSort {
void swap(int A[], int i, int j) {
int temp = A[i];
A[i] = A[j];
A[j] = temp;
}
int findMinIndex(int A[], int start) {
int min_index = start;
++start;
while(start < A.length) {
if(A[start] < A[min_index])
min_index = start;
++start;
}
return min_index;
}
void selectionSort(int A[]) {
for(int i = 0; i < A.length; ++i) {
int min_index = findMinIndex(A, i);
if(i != min_index)
swap(A, i, min_index);
}
}
public static void main(String[] args) {
int A[] = {5, 2, 6, 7, 2, 1, 0, 3};
selectionSort(A);
for(int num : A)
System.out.print(num + " ");
return 0;
}
}
Selection Sort Program in Python
def findMinIndex(A, start):
min_index = start
start += 1
while start < len(A):
if A[start] < A[min_index]:
min_index = start
start += 1
return min_index
def selectionSort(A):
i = 0
while i < len(A):
min_index = findMinIndex(A, i)
if i != min_index:
A[i], A[min_index] = A[min_index], A[i]
i += 1
A = [5, 2, 6, 7, 2, 1, 0, 3]
selectionSort(A)
for num in A:
print(num, end=' ')
Problem | Score | Companies | Time | Status |
---|---|---|---|---|
Pick from both sides! | 100 |
|
56:36 | |
Min Steps in Infinite Grid | 150 |
|
37:51 | |
Minimum Lights to Activate | 200 |
|
75:28 | |
Maximum Sum Triplet | 200 |
|
82:43 | |
Max Sum Contiguous Subarray | 225 |
|
33:39 | |
Add One To Number | 225 |
|
43:43 | |
Maximum Absolute Difference | 250 |
|
65:51 | |
Partitions | 300 |
|
75:26 | |
Maximum Area of Triangle! | 350 |
|
61:47 | |
Flip | 400 |
|
78:22 |
Problem | Score | Companies | Time | Status |
---|---|---|---|---|
Max Min | 150 |
|
17:31 | |
Merge Intervals | 225 |
|
78:57 | |
Merge Overlapping Intervals | 225 |
|
48:24 |
Problem | Score | Companies | Time | Status |
---|---|---|---|---|
Perfect Peak of Array | 200 |
|
49:19 | |
Move Zeroes | 200 |
|
29:37 | |
Make equal elements Array | 200 |
|
37:05 | |
Segregate 0s and 1s in an array | 200 |
|
16:37 | |
Array Sum | 200 |
|
37:40 | |
Kth Row of Pascal's Triangle | 225 |
|
28:32 | |
Spiral Order Matrix II | 225 |
|
48:40 | |
Pascal Triangle | 225 |
|
26:46 | |
Anti Diagonals | 225 |
|
41:46 |
Problem | Score | Companies | Time | Status |
---|---|---|---|---|
Triplets with Sum between given range | 200 |
|
76:31 | |
Balance Array | 200 |
|
63:01 | |
Find Duplicate in Array | 450 |
|
40:13 | |
Maximum Consecutive Gap | 450 |
|
58:46 |
Problem | Score | Companies | Time | Status |
---|---|---|---|---|
Sort array with squares! | 200 |
|
31:22 | |
Largest Number | 225 |
|
70:26 | |
Rotate Matrix | 300 |
|
60:26 | |
Next Permutation | 300 |
|
63:13 | |
Find Permutation | 300 |
|
56:00 |
Problem | Score | Companies | Time | Status |
---|---|---|---|---|
Occurence of Each Number | 200 |
|
28:20 |
Problem | Score | Companies | Time | Status |
---|---|---|---|---|
Noble Integer | 200 |
|
43:30 | |
Reorder Data in Log Files | 200 |
|
49:29 | |
Set Intersection | 200 |
|
57:16 | |
Wave Array | 225 |
|
22:08 | |
Hotel Bookings Possible | 225 |
|
66:06 | |
Max Distance | 250 |
|
68:14 | |
Maximum Unsorted Subarray | 250 |
|
68:52 |
Problem | Score | Companies | Time | Status |
---|---|---|---|---|
Set Matrix Zeros | 300 |
|
48:04 | |
Maximum Sum Square SubMatrix | 300 |
|
58:56 |
Problem | Score | Companies | Time | Status |
---|---|---|---|---|
First Missing Integer | 300 |
|
64:38 | |
Repeat and Missing Number Array | 350 |
|
63:55 | |
N/3 Repeat Number | 600 |
|
68:22 |